Saturday, October 30, 2021

Corn is Still Too Wet

I hand shelled several ears and took representative samples of corn from two different parts of the fields to the local grain elevator to get tested for moisture. In the last post I talked about the first test we'd done; that was 11 days ago and showed 25.4% moisture.  The most recent test is showing an average of 23.8%, still too high. I'd like to see it below 20% before we start combining. The real determining factor is the weather - if it looks like the rain/snow is coming I need to get the corn off no matter the moisture level. I think I'll need 3-4 days of decent weather to get it all combined and trucked to the elevator in Cashton, WI.

I'll then have to pay the grain elevator to dry it down to ~15%. The cost is approximately $0.05/bushel per point of moisture - so to go from 20% down to 15% will cost about $0.25/bushel. I also pay to have the excess moisture in the corn trucked to the mill. I pay trucking by weight, whether its water or corn.

I got everything all lined up to start combining tomorrow, only to find out that I'm going to have to wait another 4-5 days to start, weather depending. It's a little frustrating. I've been lucky with the weather so far this year, the forecast for the next 10 days looks good as well. Fingers crossed.

We're working on being able to dry corn here on the farm. At a minimum we'll have a new bin built, hopefully by next summer. I think it's going to be important to be able to dry corn, given the very small window I have to harvest as well as a shrinking number of buyers who can take "wet" corn.

There's a very interesting new product/design call Dri-Stack by Haber Technologies that looks promising. Dad is talking to them now to see if it would be a good fit for the farm.


They don't have many videos on YouTube, though they've got a Tik Tok page full of short clips, where I found this - 

@dristack #iowa #drycorn #habertechnologies #graindryers #farming #iowacorn #midwest #cornbelt #grainbin #futuretech #startup #newtechnology #amesiowa #fyp ♬ Mr Red White and Blue - Coffey Anderson

Wednesday, October 20, 2021

Test Run: Combining Corn

With all the repairs on the header and combine finally finished and the corn drying down, we decided to do a test run. Aside from verifying that all the new parts and repairs were meshing properly, it was a chance to set the combine up to give a clean grain sample as well as making sure it was completely chopping up the stalks and leaves. 


Once I had some shelled corn I took it to the local elevator where they tested it for moisture - its at 25.4%.  While the buyer, a feed mill, will use propane to dry it down to about 15% so they can use it and without spoiling, I end up paying for that drying at least two ways: the mill charges me a fee, per point of moisture removed, to get it down to 15%,  and also as extra trucking to ship all that excess water down to Cashton Farm Specialties (the buyer).  A good explanation of those costs and risks is here.

I'd like to have the moisture be under 20% before we start combining. That will probably take about a week of decent weather so the wind and sun can dry it down; the forecast calls for a few days of rain in the next 10 days so we'll have to wait and see. Hopefully the rain/snow will hold off for a while. 

This organic corn is going to be used as animal feed. In the future we might grow for the "food grade" market, like we did with the wheat, however selling into the food market is a bit more complicated. It would require me to be able to dry the grain myself, and then store it in a dedicated grain bin after drying. The costs of building that infrastructure are fairly high, especially considering that I can sell "wet" feed corn with a minimal cost/loss of revenue.

(Click on any picture to make it bigger.)

What I've grown can be eaten by people, it just takes some work.

Sunday, October 17, 2021

Cover Crop After the Wheat: How Does it Look?

After combining the hard red spring wheat in mid-August we drilled in a cover crop of daikon radish, purple top turnips, winter peas, sorghum sudan, wheat, and sunflowers. In addition there were a lot of viable seeds blown out the back of the combine.

When I drilled the wheat in the spring I also underseeded it with "Frosty" berseem clover, with the idea that the clover would grow under the wheat and then take off once the wheat was harvested. The clover would be my cover crop, smothering weeds, fixing nitrogen, and be winter killed, saving tillage ahead of next years soybeans. Unfortunately the weather didn't cooperate. We got a little bit of moisture right after the wheat and clover were drilled, enough to germinate the clover which was essentially dropped onto and then pressed into the soil. We didn't get any rain for about 3 weeks and so most of the clover died out, allowing the preexisting foxtail to take over. The wheat was drilled about 1.5" deep, into moisture, so it grew well without any more rain.

That led me to drill in a cover crop as detailed above. 

We have a lot of compaction on these particular fields. The turnip and radish in the cover crop will put down a large tap root which should help to break the hard pan up.  With the same goal in mind we hired a neighbor to disc-rip the ground about 24" deep. We're hoping that both of these things will help break up the hard pan, a problem that leads to a lot of foxtail, which likes "wet" compacted soils.

 It looks ok; while it's growing nicely, and should continue to do so well beyond the first hard frost, the stand is really uneven. I have some ideas on why that is -

The grain drill isn't meant to put in a low seeding rate through the main box without putting in half speed gears. With these gears the drive shaft turns at half its regular speed, this lets you double the width of the seed cups, allowing for better seed flow through the drill. I bought a set, used, but turns out they were for a slightly different serial number. By the time I got the right part there wasn't enough time to spend on making a tool that would let me install the gears. 

Short version - tough to put a small amount of differently sized seeds through a small slit. End result - ok. Next time will be better.

Taking out the smaller of these two gears is difficult because there is a roll pin that is driven through the gear and shaft. Trying to get a punch perpendicular to the shaft while leaving enough room to swing a hammer is a challenge. I'm going to try to use an air hammer with a 1/4" punch, that might be the way to get it done.

The more I think about it I'm pretty sure the air hammer will do the trick. It won't get worked on until next spring, something to look forward to I guess.

Friday, October 15, 2021

Ready for Harvest: Calmer Stalk Rolls are Installed on Deere 693 Corn Head

I've spent a fair amount of time rebuilding the corn head. I bought it, used, about 4 months ago. One of the first things we did was decide to replace the worn out stalk rolls with Calmer rolls, a fairly expensive upgrade. One of the main benefits of the new rolls is that they'll chop up the old corn stalks so that the following year there won't be so much residue that will plug up my row cultivating.

Before putting in the new rolls we stripped the head down and identified, then repaired/replaced, worn parts. We decided that the Calmer sprockets and gathering chains weren't worth the extra $1000/row. Time will tell; in the meantime we'll use what you see below.

In addition to the things I mentioned in the above video, I did (for the first time) an aluminum stick weld repair on a broken bracket. I believe that bracket, which holds the poly snouts in place where they join the tool bar, was broken as the same time when the last row unit was bent, when the previous owner ran into something (a rock?).

(Click on any image to make it bigger.)

I was happy with how the aluminum stick weld repair turned out. We'll see if it holds up after I run the combine for a while. It's not a key structural part of the head.

In front of my finger, on the left, is a nut I welded onto the broken off stub of the hex head flat drive screw that used to be in the spot where the newly installed, and silver, screw is now in place. It's just behind the new nut and slightly under the gathering chain. Prior to welding, the nut was exactly the same as the untouched nut on the right. I stick welded through the nut into the top of the broken off screw. The heat introduced by the weld helped to loosen the threads and I was able to put a wrench on the welded nut and back out the broken off screw.

I just have a few small things to adjust, and grease, and then the combine is all ready to go. The corn, approximately 100 acres that will fill about 15 semi trailers (each holding ~60,000 lbs of grain), is just about dry enough to harvest. 

The weather is favorable for the next 10 days, so starting in a week we hope to be able to get it all combined and trucked down to Cashton Farm Supply over 3-4 days, where it will be ground and blended to be ultimately sold by CFS as organic chicken feed.


When I had birds up here I would buy CFS feed in 40 lb bags at the local co-op. It costs about 10% more than the standard, Purina, chicken feed. But.... when you open a bag of each the first thing you notice is the smell - The CFS smells like freshly ground corn/polenta. I've said before that it smells good enough to eat. The Purina smells about the same as dog food, vaguely chemical.  Another point on the economics is while corn makes up a substantial portion of the feed, I as an organic producer get twice the price for each bushel I sell, compared to a conventional/chemical corn grower. As I said before, the retail price is only 10% higher for organic chicken feed. Something to think about for any of you out there who aren't organic.


I use my Huawei Mate SE phone to take all the videos and pics seen on the site. Several months ago the battery swelled up causing the screen to crack. I bought replacement parts on eBay and got the phone working again. Couldn't have done it without YouTube. 

Unfortunately it looks like I can't embed the video on the site. If you're interested go directly to the video, linked here. I'd never had a phone apart before - they're amazing pieces of equipment.

Saturday, October 2, 2021

Rebuilding Equipment Crossings

We've upgraded almost all of our equipment crossings in the past few years. Usually this means widening the entrance from the road to the field to make it possible to get larger equipment safely through the ditch, by adding a mix of stone and sand, and if needed, a culvert (or two) to allow water to continue to flow alongside the road.  We're trying to make them all 40' wide to allow for the wide turning radii of both farm equipment and semi-trailers, which we use to haul grain out of the field. 

Recently we had two done, the first was a simple matter of dumping the correct fill in the ditch and smoothing it out with the little loader bucket. Dad did a nice job.

The next one was more complicated, as it crossed Beaver Brook, which is normally 3 feet wide, but can swell up to 40 feet wide after a big rain storm.  Doing anything involving this kind of waterway involves NRCS. They have a design team that works on these kinds of projects; they also pay a majority of the cost. Dad had been talking to them for over a year on building an improved creek crossing, as the one that had been put in less than 10 years ago had washed out.

(Click on any image to make it bigger.)

Beaver Brook passes just south of the main farm buildings on 13th Street and bisects one of our fields. Without a crossing we can't get equipment across the Brook. Even if the water is down, the creek bed is muddy and we'll get stuck.
The design of the new crossing allows for the water to flow over the new precast concrete panels, which are much cheaper than installing culverts. I was told there would need to be two 50" diameter culverts to handle the peak water flow of this stream and I believe we were quoted about $50,000 to build that design. What is drawn below, and what we had installed, was about $22,000. I think that NRCS paid 70% of that.

Once everything was approved the crossing was installed in two days by Nick's Excavating. I was the first one to drive on it with the combine. It held up just fine.

Dad posing with his new crossing. It looks really good, a huge benefit to the farm.

Friday, October 1, 2021

Report on First Year of Growing Hard Red Spring Wheat

 With all of the organic wheat delivered to Ardent Mills, in Mankato, MN, I have enough information to recap our first year growing food grade organic wheat.

One of the questions we had in early spring is where, assuming we could meet the buyer's specifications, we could sell the wheat. After making some phone calls I found several interested buyers. They all said that as a first step I needed to get the wheat harvested and in a grain bin with a fan blowing on it. Once it had dried down I sent out three pound samples to prospective buyers. I also sent a sample to Illinois Crop Improvement, who I paid to conduct "independent" tests: test weight, moisture, vomitoxin levels, protein, and falling number.

Falling Number is a basic test for wheat and flour. The falling number instrument analyzes viscosity by measuring the resistance of a flour and water paste to a falling stirrer. Falling number results are recorded as an index of enzyme activity in a wheat or flour sample and the results are expressed in time as seconds. 

A high falling number (for example, above 300 seconds) indicates minimal enzyme activity and sound quality wheat or flour. A low falling number (for example, below 250 seconds) indicates substantial enzyme activity and sprout-damaged wheat or flour.

The level of enzyme activity in wheat and flour measured by the Falling Number Test affects product quality. Yeast in bread dough, for example, requires sugars to develop properly and therefore needs some level of enzyme activity in the dough. 

Too much enzyme activity, however, means that too much sugar and too little starch are present. Since starch provides the supporting structure of bread, too much activity results in sticky dough during processing and poor texture in the finished product. 

If the falling number is too high, enzymes can be added to the flour in various ways to compensate. If the falling number is too low, enzymes cannot be removed from the flour or wheat, which results in a serious problem that makes the flour unusable.

 The numbers on the tests looked good, exceeding the minimum of 14% protein, a test weight of more than 59 lbs/bushel, less than 1 ppm (part per million) of vomitoxin, and a falling number higher than 250 seconds. Had any of the numbers been below the standard, the wheat would have been sold as animal feed, which brings a much lower price.

(Click on image to make it bigger.)

I agreed on a price with Ardent Mills based on the the sample I sent to them. We harvested the wheat on August 14-16th. After it was trucked to a bin, I ran the fan in the grain bin for about 4 weeks, drying the wheat down to 12.5%. I hired a trucker to take the three loads, a total of 160,000 lbs, or 2600 bushels, to the mill in Mankato, MN. 

After the wheat was harvested we disc-ripped the ground to break up a foxtail inducing hard pan layer, pulling up a lot of big rocks.


 Following that I drilled in a cover crop of radish, turnip, and winter peas. Next year the wheat ground will be in soybeans.

It was a successful first year growing wheat. I've only skimmed the surface in this recap - lots of invaluable experience that stays with me for now, as I'm unwilling to put the effort into writing it all down.